Three calpains and ecdysone receptor in the land crab Gecarcinus lateralis: sequences, expression and effects of elevated ecdysteroid induced by eyestalk ablation.

نویسندگان

  • H-W Kim
  • E S Chang
  • D L Mykles
چکیده

Crustacean muscle has four calpain-like proteinase activities (CDP I, IIa, IIb and III) that are involved in molt-induced claw muscle atrophy, as they degrade myofibrillar proteins in vitro and in situ. Using PCR cloning techniques, three full-length calpain cDNAs (Gl-CalpB, Gl-CalpM and Gl-CalpT) were isolated from limb regenerates of the tropical land crab Gecarcinus lateralis. All three had highly conserved catalytic (dII) and C2-like (dIII) domains. Gl-CalpB was classified as a typical, or EF-hand, calpain, as the deduced amino acid sequence had a calmodulin-like domain IV in the C-terminus and was most similar to Drosophila calpains A and B. Based on its estimated mass (approximately 88.9 kDa) and cross-immunoreactivity with a polyclonal antibody raised against Dm-CalpA, Gl-CalpB may encode CDP IIb, which is a homodimer of a 95-kDa subunit. It was expressed in all tissues examined, including skeletal muscle, heart, integument, gill, digestive gland, hindgut, nerve ganglia, gonads and Y-organ (molting gland). Both Gl-CalpM and Gl-CalpT were classified as atypical, or non-EF-hand, calpains, as they lacked a domain IV sequence. Gl-CalpM was a homolog of Ha-CalpM from lobster, based on similarities in deduced amino acid sequence, estimated mass (approximately 65.2 kDa) and structural organization (both were truncated at the C-terminal end of dIII). It was expressed at varying levels in most tissues, except Y-organ. Gl-CalpT (approximately 74.6 kDa) was similar to TRA-3 in the nematode Caenorhabditis elegans; domain IV was replaced by a unique ;T domain' sequence. It was expressed in most tissues, except eyestalk ganglia and Y-organ. The effects of elevated ecdysteroid, induced by eyestalk ablation, on calpain and ecdysone receptor (Gl-EcR) mRNA levels in skeletal muscles were quantified by real-time PCR. At 1 day after eyestalk ablation, Gl-EcR and Gl-CalpT mRNA levels increased 15- and 19.3-fold, respectively, in claw muscle but not in thoracic muscle. At 3 days after eyestalk ablation, Gl-EcR and Gl-CalpT mRNA levels in claw muscle had decreased to 2.8-fold and 4.3-fold higher than those in intact controls, respectively, suggesting a feedback inhibition by ecdysteroid. There was no significant effect of eyestalk ablation on Gl-CalpB and Gl-CalpM mRNA levels. Gl-CalpT and Gl-EcR mRNA levels were significantly correlated in both claw and thoracic muscles from intact and eyestalk-ablated animals. The data suggest that Gl-CalpT is involved in initiation of claw muscle atrophy by ecdysteroids. Premolt reduction in claw muscle mass and concomitant remodeling of the sarcomere probably result from post-transcriptional regulation of calpains.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of elevated ecdysteroid on tissue expression of three guanylyl cyclases in the tropical land crab Gecarcinus lateralis: possible roles of neuropeptide signaling in the molting gland.

Two eyestalk (ES) neuropeptides, molt-inhibiting hormone (MIH) and crustacean hyperglycemic hormone (CHH), increase intracellular cGMP levels in target tissues. Both MIH and CHH inhibit ecdysteroid secretion by the molting gland or Y-organ (YO), but apparently through different guanylyl cyclase (GC)-dependent pathways. MIH signaling may be mediated by nitric oxide synthase (NOS) and NO-sensitiv...

متن کامل

Molt cycle regulation of protein synthesis in skeletal muscle of the blackback land crab, Gecarcinus lateralis, and the differential expression of a myostatin-like factor during atrophy induced by molting or unweighting.

In decapod crustaceans, claw muscle undergoes atrophy in response to elevated ecdysteroids while thoracic muscle undergoes atrophy in response to unweighting. The signaling pathways that regulate muscle atrophy in crustaceans are largely unknown. Myostatin is a negative regulator of muscle growth in mammals, and a myostatin-like cDNA is preferentially expressed in muscle of the land crab, Gecar...

متن کامل

Rheb, an activator of target of rapamycin, in the blackback land crab, Gecarcinus lateralis: cloning and effects of molting and unweighting on expression in skeletal muscle.

Molt-induced claw muscle atrophy in decapod crustaceans facilitates exuviation and is coordinated by ecdysteroid hormones. There is a 4-fold reduction in mass accompanied by remodeling of the contractile apparatus, which is associated with an 11-fold increase in myofibrillar protein synthesis by the end of the premolt period. Loss of a walking limb or claw causes a loss of mass in the associate...

متن کامل

Ecdysteroids Regulate the Levels of Molt-Inhibiting Hormone (MIH) Expression in the Blue Crab, Callinectes sapidus

Arthropod molt is coordinated through the interplay between ecdysteroids and neuropeptide hormones. In crustaceans, changes in the activity of Y-organs during the molt cycle have been regulated by molt-inhibiting hormone (MIH) and crustacean hyperglycemic hormone (CHH). Little has been known of the mode of direct effects of ecdysteroids on the levels of MIH and CHH in the eyestalk ganglia durin...

متن کامل

Cloning and Expression of Ecdysone Receptor and Retinoid X Receptor from Procambarus clarkii: Induction by Eyestalk Ablation

Ecdysone receptor and retinoid X receptor are key regulators in molting. Here, full length ecdysone receptor (PcEcR) and retinoid X receptor (PcRXR) cDNAs from Procambarus clarkii were cloned. Full length cDNA of PcEcR has 2500 bp, encoding 576 amino acid proteins, and full length cDNA of PcRXR has 2593 bp, in which a 15 bp and a 204 bp insert/deletion splice variant regions in DNA binding doma...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of experimental biology

دوره 208 Pt 16  شماره 

صفحات  -

تاریخ انتشار 2005